Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach

نویسندگان

  • Pertti Ala-Aho
  • Doerthe Tetzlaff
  • James P McNamara
  • Hjalmar Laudon
  • Patrick Kormos
  • Chris Soulsby
چکیده

Use of stable water isotopes has become increasingly popular in quantifying water flow paths and travel times in hydrological systems using tracer-aided modeling. In snow-influenced catchments, snowmelt produces a traceable isotopic signal, which differs from original snowfall isotopic composition because of isotopic fractionation in the snowpack. These fractionation processes in snow are relatively well understood, but representing their spatiotemporal variability in tracer-aided studies remains a challenge. We present a novel, parsimonious modeling method to account for the snowpack isotope fractionation and estimate isotope ratios in snowmelt water in a fully spatially distributed manner. Our model introduces two calibration parameters that alone account for the isotopic fractionation caused by sublimation from interception and ground snow storage, and snowmelt fractionation progressively enriching the snowmelt runoff. The isotope routines are linked to a generic process-based snow interception-accumulation-melt model facilitating simulation of spatially distributed snowmelt runoff. We use a synthetic modeling experiment to demonstrate the functionality of the model algorithms in different landscape locations and under different canopy characteristics. We also provide a proof-of-concept model test and successfully reproduce isotopic ratios in snowmelt runoff sampled with snowmelt lysimeters in two long-term experimental catchment with contrasting winter conditions. To our knowledge, the method is the first such tool to allow estimation of the spatially distributed nature of isotopic fractionation in snowpacks and the resulting isotope ratios in snowmelt runoff. The method can thus provide a useful tool for tracer-aided modeling to better understand the integrated nature of flow, mixing, and transport processes in snow-influenced catchments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Isotopes to Constrain Water Flux and Age Estimates in Snow-Influenced Catchments Using the STARR (Spatially Distributed Tracer-Aided Rainfallâ•fiRunoff) Model

Tracer-aided hydrological models are increasingly used to reveal fundamentals of runoff generation processes and water travel times in catchments. Modelling studies integrating stable water isotopes as tracers are mostly based in temperate and warm climates, leaving catchments with strong snow influences underrepresented in the literature. Such catchments are challenging, as the isotopic tracer...

متن کامل

Isotopic evolution of snowmelt 1. A physically based one-dimensional model

[1] The O/O ratio of snowmelt from a seasonal snowpack typically increases with time as the melting process progresses. This temporal evolution is caused by isotopic exchange between liquid and ice as meltwater percolates down the snow column. Consequently, hydrograph separations of spring runoff using the bulk snow composition as the new water end-member will be erroneous. Accurate determinati...

متن کامل

Estimating stream chemistry during the snowmelt pulse using a spatially distributed, coupled snowmelt and hydrochemical modeling approach

[1] We used remotely sensed snow cover data and a physically based snowmelt model to estimate the spatial distribution of energy fluxes, snowmelt, snow water equivalent, and snow cover extent over the different land cover types within the Green Lakes Valley, Front Range, Colorado. The spatially explicit snowpack model was coupled to the Alpine Hydrochemical Model (AHM), and estimates of hydroch...

متن کامل

How isotopic fractionation of snowmelt affects hydrograph separation

We present the isotopic composition of meltwater samples from four seasonal snowpacks: a warm, maritime snowpack in California; a temperate continental snowpack in Vermont; a cold continental snowpack in Colorado; and an Arctic snowpack in Alaska. Despite the very different climate conditions the υ18O of meltwater from all four snowpacks increased as melting progressed. This trend is consistent...

متن کامل

Isotopic evolution of snowmelt 2. Verification and parameterization of a one-dimensional model using laboratory experiments

[1] Three controlled cold room experiments were conducted to verify and parameterize a one-dimensional (1-D) model that simulates the isotopic composition of meltwater exiting the base of a snowpack. In the model, snow melts at the surface at a constant rate, and water percolates down the column while exchanging isotopically with ice. The effective rate of isotopic exchange and hence the isotop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2017